
Lecture #5
Working with Time
(Interrupts, Counters and Timers)
Instructor:
Dr. Ahmad El-Banna

S
P
R

I
N

G
 2

0
1
5

E-626-A
Real-Time Embedded Systems (RTES)

Integrated Technical Education Cluster
At AlAmeeria

©
 A

hm
ad

 E
l-B

an
na

Agenda

Interrupt Structure

Working with Interrupts

Counters

Timers

Watchdog Timer & Sleep Mode 2

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

INTERRUPTS 3

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

The main idea – interrupts

• Computer CPU is a deeply orderly entity, following the instructions
of the program one by one and doing what it is told in a precise and
predictable fashion.

• An interrupt disturbs this order.

• Its function is to alert the CPU in no uncertain terms that some
significant external event has happened, to stop it from what it is
doing and force it (at the greatest speed possible) to respond to
what has happened.

• Originally interrupts were applied to allow emergency external
events, such as power failure, the system overheating or major
failure of a subsystem to get the attention of the CPU.

• But the concept of interrupts was recognized as being very
powerful.

4

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Interrupt Classifications

Some categories are:

• Internal/ External

• Hardware/ Software

• Maskable/ Non-maskable

5

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Interrupt structures

• Different microcontrollers have rather different interrupt structures.

• They have more than one interrupt source, usually with some
internally generated and others external.

6

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

• A simple generic interrupt structure

Example:
The 16F84A interrupt structure

7

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

INTCON register (16F84A)

8

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Interrupt Response Sequence of
Events

9

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Working with Interrupts

• It is easy to write simple programs with just one interrupt.

• Using Assembly language!

• For success, the essential points to watch are:

• Start the ISR at the interrupt vector, location 0004.

• Enable the interrupt that is to be used by setting the enable bit in the
INTCON register.

• Set the Global Enable bit, GIE.

• Clear the interrupt flag within the ISR.

• End the ISR with a retfie instruction.

• Ensure that the interrupt source, for example Port B or Timer 0, is
actually set up to generate interrupts!

10

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Example

11

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

COUNTERS & TIMERS 12

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

The main idea – counters and
timers
• Counters can be made which count up, count down, can be cleared

back to zero, pre-loaded to a certain value, and which by the
provision of an overflow output can be cascaded with other
counters.

13

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

• A digital counter
made of eight flip-flops

• Eight negative edge-
triggered J–K bistables
are interconnected, so
that the Q-output of one
drives the clock input of
the next.

• With J and K both tied to
Logic 1, the flip-flop
toggles on every input
negative edge.

• Q7 MSB

 output timing diagram

The counter as a timer

• It is extremely useful for a microcontroller to be able to count – widgets
passing on a conveyor belt, for example, coins in a slot machine, or people
going through a door.

• It is, however, especially useful if it can measure time, and the counter
allows us to do this.

• Suppose the input signal of a counter is a stable 1 kHz clock frequency.
• Then the counter would increment exactly every 1 ms.

• After 16 clock cycles, exactly 16 ms would have elapsed, after 31 cycles 31 ms and
so on.

• By starting the clock input at a moment of choice, it is therefore possible to
measure elapsed time.

• The resolution of the measurement

 is determined by the period of the clock.

• In this example the resolution is 1 ms

and we can’t measure anything less than that,

 or a fraction of it.

14

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

The challenge of time measurement

• The actual measurement seems easy – start the counter/timer
running when the first event occurs and stop it at the moment of the
second.

• In practice, this poses a number of challenges.

• For an accurate measurement, the start and stop of the
counter/timer must be perfectly synchronised with the events.

• The best way of doing this is by using an interrupt.

• If we don’t have an interrupt,

then we will have to

continuously scan the input

to detect when the event occurs .

15

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

16F84A Timer 0 module

16

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

16F84A OPTION register

17

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

The Watchdog Timer

• A big danger with any computer-based system is that the
software fails in some way and that the system locks up or
becomes unresponsive.

• In a desktop computer such a lock-up can be annoying and
one would normally have to reboot.

• In an embedded system it can be disastrous, as there may be
no user to notice that there is something wrong and maybe
no user interface anyway.

• The WDT offers a fairly brutal ‘solution’ to this problem.

• It is a counter, internal to the microcontroller, which is
continually counting up.

• If it ever overflows, it forces the microcontroller into Reset. 18

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Sleep Mode

• It is an important way of saving power.

• The microcontroller can be put into this mode by executing the
instruction SLEEP.

• Once in Sleep mode, the microcontroller almost goes into
suspended animation.

• The clock oscillator is switched off, the WDT is cleared, program
execution is suspended, all ports retain their current settings, and
the PD and TO bits in the Status register are cleared and set
respectively.

• If enabled, the WDT continues running.

• Under these conditions, power consumption falls to a negligible
amount.

19

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Sleep Mode..

• The MCU wakes from Sleep in the following situations:

• External reset through MCLR pin.

• WDT wake-up.

• Occurrence of interrupt.

• On wake-up, the oscillator circuit is restarted.

• The Sleep mode is extremely powerful for products that must
be designed in a power conscious way.

• Battery-based devices

• WSN 20

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

SAMPLE PROJECT 21

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

Keypad/Display
Example

22

RT
ES

, L
ec

#5
 , S

pr
in

g 2
01

5
©

 A
hm

ad
 E

l-B
an

na

When you press a key,
Display it on the 7-segment

• For more details, refer to:

• Chapter 6, T. Wilmishurst, Designing Embedded Systems with PIC
Microcontrollers, 2010.

• The lecture is available online at:

• http://bu.edu.eg/staff/ahmad.elbanna-courses/12134

• For inquires, send to:

• ahmad.elbanna@feng.bu.edu.eg

23

©
 A

hm
ad

 E
l-B

an
na

RT

ES
, L

ec
#5

 , S
pr

in
g 2

01
5

http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
mailto:ahmad.elbanna@feng.bu.edu.eg

