INTEGRATED TECHNICAL EDUCATION CLUSTER

40)
(o
(o
40)
o)
L]
-
40)
=
-
<
©

AT ALAMEERIA

E-626-A

Real-Time Embedded Systems (RTES)

Lecture #5 A
Working with Time
(Interrupts, Counters and Timers) -
Instructor: f
Dr. Ahmad El-Banna Q y,

ere!

[

Agenda

. Interrupt Structure ‘
. Working with Interrupts ‘
. Counters ‘
. Timers ‘

. Watchdog Timer & Sleep Mode

© /—\l‘lma& ELBama

(o)
—
)
N
o0
=
~
Q
)
(o)
H+
Q
Q
—
7]
=
a2

euveC]-] pewyy/ o G107 Bulids G#097 ‘SAI

INTERRUPTS

The main idea - interrupts

* Computer CPU is a deeply orderly entity, following the instructions
of the program one by one and doing what it is told in a precise and
predictable fashion.

© Ahma& ELBanna

* An interrupt disturbs this order.

* Its function is to alert the CPU in no uncertain terms that some
significant external event has happened, to stop it from what it is
doing and force it (at the greatest speed possible) to respond to
what has happened.

* Originally interrupts were applied to allow emergency external
events, such as power failure, the system overheating or major
failure of a subsystem to get the attention of the CPU.

[@)
—{
@)
Q|
o0
E
-
Q
99
(@)
H
QO
Q
—_
)
=
(=

* But the concept of interrupts was recognized as being very
powerful.

Interrupt Classifications

Some categories are:

© Ahma& E_Lbanna

* Internal/ External
* Hardware/ Software
* Maskable/ Non-maskable

[@)
—{
@)
Q|
o0
E
—
Q
99
(@)
H
QO
Q
—_
72}
=
(=

Interrupt structures

* Different microcontrollers have rather different interrupt structures.

40)
(o
(o
40)
o)
L
-
40)
=
-
<C
©)

* They have more than one interrupt source, usually with some
internally generated and others external.

. - o
* A simple generic interrupt structure 8
s\
Other %0
Replicated for all other maskable interrupts maskable Global Interrupt Enable* a
/ interrupts L 5
| InteruptX Enable* | ‘ ‘) - o
I I
: | | 3
| Interrupt X _/ : Interrupt Z
I o—s Q : . =
! . inputs to >
| : " CPU
(Resetby CPU | R — Interrupt !
1or program) flag* !
Non-néaskable
interrupt J

* bits in a Special Function Register

Example:
The 16F84A interrupt structure

Timer Overflow Flag

Timer Overflow

\TOIF

Interrupt Enable [> TOIE

External Interrupt

INTF
INTE

Port B Change

{ RBIF
RBIE

EEPROM Write
Complete

{EEIF
EEIE

Global Interrupt
Enable

_~GIE

|

O

h

Wake-up
(if in Sleep mode)

_J —)
ST

l

—

D_iFerrupt to CPU

© Ahma& E_Lbanna

(o)
—
)
N
o0
=
=
Q
)
(o)
H+
Q
Q
—
7]
=
a2

INTCON register (16F84A)

© Ahma& E_Lbanna

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x
GIE EEIE TOIE L INTE RBIE TOIF [INTF RBIF
bit 7 bit 0
bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts
0 = Disables all interrupts
bit 6 EEIE: EE Write Complete Interrupt Enable bit
1 = Enables the EE Write Compilete interrupts
0 = Disables the EE Write Complete interrupt
bit 5 TOIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO interrupt
0 = Disables the TMRO interrupt
bit 4 INTE: RBO/INT External interrupt Enable bit
1 = Enables the RBO/INT external interrupt
0 = Disables the RBO/INT external interrupt
bit 3 RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt
bit 2 TOIF: TMRO Overflow Interrupt Flag bit
1 = TMRO register has overflowed (must be cleared in software)
0 = TMRO register did not overflow
bit 1 INTF: RBO/INT External Interrupt Flag bit
1 = The RBO/INT external interrupt occurred (must be cleared in software)
0 = The RBO/INT external interrupt did not occur
bit 0 RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
0 = None of the RB7:RB4 pins have changed state

[@)
—{
@)
Q|
o0
=
-
Q
99
(@)
H
QO
Q
—_
72}
=
(=

—
(00]
—

Interrupt Response Sequence of
Events

Interrupt detected Main program is running

.

Complete current instruction

Y

Save Program Counter on Stack

.

Clear GIE

v
Reload PC with 0004,

B

Continue program execution ISR execution starts

© Ahma& ELBanna

Instruction
is RETFIE?

[@)
—{
@)
Q|
o0
E
—
Q
99
(@)
H
QO
Q
—_
72}
=
(=

Set GIE to 1

v
Load PC from Stack

-

Continue program execution Main program continues

—
(o}
—

Working with Interrupts

* Itis easy to write simple programs with just one interrupt.

* Using Assembly language!

* For success, the essential points to watch are:

Start the ISR at the interrupt vector, location 0004.

Enable the interrupt that is to be used by setting the enable bit in the
INTCON register.

Set the Global Enable bit, GIE.
Clear the interrupt flag within the ISR.
End the ISR with a retfie instruction.

Ensure that the interrupt source, for example Port B or Timer O, is
actually set up to generate interrupts!

© Ahma& ELBanna

[@)
—{
@)
Q|
o0
E
-
Q
99
(@)
H
QO
Q
—_
)
=
(=

;i—*-k-**-.l—*-k****-k****t**************************************

;Int Demol

;This program demonstrates simple interrupts.

;Intended for simulation.

;tiw rev.14.2.09 Tested in simulation 14.9.09

E mp e T e A e e e i e e e e e A e e
x] I ¥
¥

include pléef84A.inc

;Port & all output

;Port B: bit 0 = Interrupt Input
org 0o
goto start

40)
C
(o
40)
o)
L]
-
40)
=
-
<C
©

org 04 shere if interrupt occurs
gote Int Routine

org 0010
;Initialise
start bst status, rpl ;select bank 1 | @)
movliw 01 —
movwf trisb ;portbh bits 1-7 output O
; bit 0 is input N
movlw 00 o0
movwf trisa rporta bits all output E
;Comment in or out following instruction to change I~
;interrupt edge é%?
; bef option reg,intedg -
bef status, rpl ;select bank 0 (@
bsf intcon, inte ;enable external interrupt ¢t
bsf intcon,gie ;enable global int &3
. . —
wait movlw Oa ;set up initial port output values o
movwf porta E
nop
movlw 15 EZ

movwf porta
goto wait

.
r

[HEY
[HEY

org 0080
Int Routine
movlw 00
movwf porta
bef intceon, intf ;clear the interrupt flag
retfie

end

euveC]-] pewyy/ o G107 Bulids G#097 ‘SAI

COUNTERS & TIMERS

The main idea - counters and
timers

* Counters can be made which count up, count down, can be cleared
back to zero, pre-loaded to a certain value, and which by the
provision of an overflow output can be cascaded with other

counters. Q, Q, Q, Q Q, Qs Qs
L. J - @ —J4 Q =4 Q —J Q —1J Q —J Q J
* Adigital counter '&":c:» < b 3

made of eight flip-flops B d 1]

© Ahma& E_Lbanna

I_l.
I.-l

| -

* Eight negative edge-
triggered J—K bistables
are interconnected, so
that the Q-output of one
drives the clock input of
the next.

* WithJand K both tied to
Logic 1, the flip-flop
toggles on every input
negative edge.

e Q7> MSB

RTES, Lec#5 , Spring 2015

=
(98]
—

output timing diagram 2>

The counter as a timer

It is extremely useful for a microcontroller to be able to count — widgets
passing on a conveyor belt, for example, coins in a slot machine, or people
going through a door.

It is, however, especially useful if it can measure time, and the counter
allows us to do this.

Suppose the input signal of a counter is a stable 1 kHz clock frequency.
* Then the counter would increment exactly every 1 ms.

* After 16 clock cycles, exactly 16 ms would have elapsed, after 31 cycles 31 ms and
so on.

By starting the clock input at a moment of choice, it is therefore possible to
measure elapsed time.

* The resolution of the measurement A
is determined by the period of the clock. READ
* In this example the resolution is 1 ms LOAD
and we can’t measure anything less than that, i7

or a fraction of it. Clock Counter Overflow

© Ahma& ELBanna

[@)
—{
@)
Q|
o0
E
-
Q
99
(@)
H
QO
Q
—_
)
=
(=

The challenge of time measurement

* The actual measurement seems easy — start the counter/timer
running when the first event occurs and stop it at the moment of the
second.

40)
(o
(o
40)
o)
L
-
]
=
-
<C
©)

* In practice, this poses a number of challenges.

(@]
* For an accurate measurement, the start and stop of the §
counter/timer must be perfectly synchronised with the events. 0
* The best way of doing this is by using an interrupt. &
99
* If we don’t have aninterrupt, , ; -
] Event 1 |—\ 1+
then we will have to P S
o . Event 2 m —_
continuously scan the input r.\ ?.\ tme — 2
to detect when the event occurs . [Start counterhere | [Stop counter here >
b - T
1 [

16F84A Timer 0 module

40)
(o
(o
40)
o)
L
-
40)
=
-
<C
©

l E I Multiplexer selecting Multiplexer
nput edge select counting source selecting prescaler
N\ y / I
/ / Dala Bus) o
FoSC/4 0 PSOUT 8-bit counter —
1 P X S
Sync with
D_ 1 Iglemal TMRO %0
RA4/TOCKI Programmable | | 0 locks PSOUT e
pin Prescaler =
TOSE (2 Cycle Delay) =
2 -
Set Interrupt o)
PSSz, PS1, P50 PSA Flag bit TOIF +
Tocs on Overflow $)
Q
Note 1: TOCS, TOSE, PSA, PS2:PS0 (OPTION_REG<5:0>). —
2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).)
B
—
a2

=
(9))]
—

16F84A OPTION register

RAW-1 RAW-1 A= RAV-1 RAW-1 RAV-1 RAW-1 AW
REFU INTEDG TOCS TOSE PSA ps2 PS1 FS0
bit 7 bit 0

© Ahma& E_Lbanna

bit 7 RBPU: FORTE Pull-up Enable bit
1 = PORTE pull-ups are disabled
0 = PORTE pullups are enabled by individual port latch values
bit & INTEDG: Interrupt Edge Select bit
1= Intarrupt an rising adge of RBOINT pin
0= Interrupt on falling edge of RBOANT pin
bit 5 TOCS: TMRO Clock Source Select bit
1 = Transition on RBA4TOCK] pin
0 = Internal instruction cycle clock (CLEOUT)
bit 4 TOSE: TMRO Source Edge Sekect bit
1 = Increment on high-to-low transition on RA4TOCKN pin
0 = Incrgmeant on low-to-high transition on RALTOCKI pin
bit 3 PSA: Prescaler Assignment bil
1 = Prescaler is assigned to the WDT
0= Prescaler is assigned to the Timer 0 module
bit 2-0 PS2:PS0: Prescaler Rate Select bits

Bit Value TMRO Rate WDT Rate

HLE 12
{1 -]
010]
0Ll 116
100 .
101 - Bd
110 ;128
111 : 256

[@)
—{
@)
Q|
o0
E
—
Q
99
(@)
H
QO
Q
—_
72}
=
(=

=
~
—

T e
— ok ok i ok
ﬁiﬁaﬁhm—.

The Watchdog Timer

A big danger with any computer-based system is that the
software fails in some way and that the system locks up or
becomes unresponsive.

In a desktop computer such a lock-up can be annoying and
one would normally have to reboot.

In an embedded system it can be disastrous, as there may be
no user to notice that there is something wrong and maybe
no user interface anyway.

The WDT offers a fairly brutal ‘solution’ to this problem.

It is a counter, internal to the microcontroller, which is
continually counting up.

If it ever overflows, it forces the microcontroller into Reset.

© Ahmad ELBanna

[@)
—{
@)
Q|
o0
E
-
Q
99
(@)
H
QO
Q
—_
)
=
(=

Sleep Mode

* Itis an important way of saving power.

© Ahma& ELBanna

* The microcontroller can be put into this mode by executing the
instruction SLEEP.

* Once in Sleep mode, the microcontroller almost goes into
suspended animation.

* The clock oscillator is switched off, the WDT is cleared, program
execution is suspended, all ports retain their current settings, and
the PD and TO bits in the Status register are cleared and set
respectively.

* If enabled, the WDT continues running.

* Under these conditions, power consumption falls to a negligible
amount.

[@)
—{
@)
Q|
o0
E
-
Q
99
(@)
H
QO
Q
—_
)
=
(=

Sleep Mode..

* The MCU wakes from Sleep in the following situations:

© Ahma& ELBanna

* External reset through MCLR pin.
 WDT wake-up.
* Occurrence of interrupt.

* On wake-up, the oscillator circuit is restarted.

* The Sleep mode is extremely powerful for products that must
be designed in a power conscious way.

[@)
—{
@)
Q|
o0
E
-
Q
99
(@)
H
QO
Q
—_
)
=
(=

* Battery-based devices
* WSN

euveC]-] pewyy/ o G107 Bulids G#097 ‘SAI

SAMPLE PROJECT

-
1

—_
e

Columns

Keypad/Display Lo
Example S

(SN

N
N

Ny
© Ahma& ELBanna

HHHE H

-
= = -1

ROAPSF?

etc T/ T/ Key
Key displayed on 2008
—d
7 segment LED
| ——
DSCHUCLKIN RAINT [le)
DECRCLKOUT RE i — —
MCLRMNpaiTHY RE2 |t
SEAIPCAM —_ O
RADIAND REd i a\|
RATIANA RES ftik
FRAIAMNIVREF- REGIPET J bo
RAJANIVREF RET/PED 2L =
RALTOCK] c—
RASIA M RCOTI OSSO TICE! _::E. =~
RCUTIOSICCPE (12 ng
REWANSFD RCaCee L
RE1ANEAE (T e T L — o
REZANTTS RCArE DDA ;.:“5 n
RC&SED0 2:
AT Ry
RETROODT =22 ()
Q
ROWPER] 1: p—
RCATFPER T -
L 3
— 9B
28 P‘
2 ~Z
fr 4]

Forona 1 23 When you press a key,
RISPERPS . .
Fremere | Display it on the 7-segment
e B 5 6
FROGRAM=EEEYFAD HEX -
CLDCK=dNHZ -
U1 8 9 22 J
0 #

:.*: =] o P

* For more details, refer to:

* Chapter 6, T. Wilmishurst, Designing Embedded Systems with PIC
Microcontrollers, 2010.

© Ahma& E_Lbanna

* The lecture is available online at:
e http://bu.edu.eg/staff/ahmad.elbanna-courses/12134

* For inquires, send to:

e ahmad.elbanna@feng.bu.edu.eg

[@)
—{
@)
Q|
o0
E
—
Q
99
(@)
H
QO
Q
—_
72}
=
(=

http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
http://bu.edu.eg/staff/ahmad.elbanna-courses/12134
mailto:ahmad.elbanna@feng.bu.edu.eg

